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Abstract 

Given the stone industry vitality to any economy, its continuous progress is of significant 
interest. To improve their products and industry, the company, Fravizel, desires to use 3D 
metrology tools in order to obtain 3D models of the stone blocks extracted in quarries. 3D models 
of the unprocessed stone blocks could be used to optimize intermediary processes and 3D 
models of the processed stone blocks could be used for advertising. 

This thesis offers a solution for the design of 3D scanners that acquires the information 
required for 3D reconstruction through computer vision. The first scanner consists of integrating 
an optical system to Fravizel’s machines, alleviating the cost of new infrastructures. The second 
scanner consists of a camera system capable of acquiring images while circling the stone block, 
for an advertisable gapless high-quality 3D model. The data, the proposed scanners acquire, 
consists of a set of images required for reconstruction and the calibrations of the image sensors 
that could increase the efficiency of the reconstruction process. 

 Both scanner configurations yielded positive yet not ideal data for the reconstruction step. 
The first scanner obtains 12Mp images and was poorly intrinsically calibrated in 461.14 seconds 
with a mean-absolute-error of 33.99 pixels. The second scanner obtains 8Mp images and was 
well intrinsically calibrated in 124.03 seconds with a mean-absolute-error of 0.13 pixels. Pose 
estimations across both scanners were more reliable using algorithms without RANSAC obtaining 
correct calibrations with mean-absolute errors of 0.27-0.43 pixels in the first scanner and 0.14-
8.87 pixels in the second scanner. 
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1 Introduction 

Mineral resources are highly sought 
out recourses generated by natural 
geological processes. These processes are 
large scaled, slow, outside the control of 
humanity and not replicable, making these 
resources, practically speaking, 
nonrenewable [1]. Humanity has used 
mineral resources since pre-historic time. 
We have continuously evolved and 
developed the use of more and more mineral 
resources with such significance that historic 
periods have been referred to as the stone 
age, the Bronze Age, and so on, as we 
updated our methods and technology with 
newer minerals. Presently we have found 
applications for most discovered natural 

resources. Mineral recourses can be 
categorized based on their application, fuel 
minerals, industrial minerals and metallic 
minerals [2]. 

Limestone is an example of a rock, 
mostly composed of the mineral calcite, this 
is a mineral recourse commonly used 
worldwide in construction, either structurally 
or decoratively, and in the production of 
cement, an important building material. In a 
quarry the limestone is removed from its 
bedrock in large parallelepiped blocks. 
These blocks must be processed into an 
acceptable state, before they can be sold, 
one of the steps in this process involves 
cutting the block to remove flaws. Quarries 
use heavy machinery equipped with saws to 
cut the stone blocks.  



The size and weight of the stone 
blocks become a hindrance to the 
advertising and cutting process of the 
blocks: 

 The stone blocks are inspected for 
flaws, visually by a worker 

 The cuts placement is determined 
visually by a worker. 

 The cutting machine is positioned 
manually by a worker. 

 Images of the processed stone 
blocks poorly advertise the quality of 
its surface and dimensions.  

We intend to take a step towards 
minimizing these shortcomings using 3D 
Metrologic technology. Therefore, this thesis 
statement is: Design and implement a 3D 
scanning system that optimizes the following 
3D reconstruction, improving its efficiency 
and viability.  The main question this thesis 
aims to answer is: 

How effectively does the proposed 
solution collect the data required for 3D 
reconstruction? 

In order to answer this question, the 
following complementary questions should 
also be addressed: 

1. What type of scanner is most viable 
towards replacing the workers 
visual analysis of the stone blocks? 

2. Can the proposed solution be 
designed around the Fravizel’s 
machine, in order to use the 
existing structure and 
functionalities? 

3. What other mediums can be used 
to advertise the blocks? 

2 Literary Review 

Three-dimensional reconstruction is 
the process of determining the three-
dimensional profile and coordinates of the 
surface points of an object. The process of 
collecting the required data for 3D 
reconstruction is referred to as 3D Scanning. 
Three-dimensional scanning can be divided 
into two categories: Methods that required 
physical interaction with the object, contact 
scanning, and methods that do not require 
physical interaction with the object, non-
contact scanning [3]. Contact scanning is a 
straightforward process, the object is fixed to 
a precision flat surface plate or fixture while 
a high precision kinematic chain system 
repeatedly touches the objects surface 

recording measurements of the location of 
the kinematic chain’s probe to be used as 
data for the 3D reconstruction. An example 
of this are the coordinate-measuring 
machines more commonly called CMM 
scanners [4]. Contact systems applicability 
is limited due to its physical approach. The 
used process requires the mapping of the 
surface, point by point limiting the speed of 
the process, the dimensions and resistance 
of the object. 

In order to collect information on an 
object’s shape without physically interaction, 
non-contact scanners were developed using 
known properties of several types of 
emissions such as radiation and sounds by 
detecting or recording their interaction with 
the object. Non-contact scanners are divided 
into two categories, active and passive [5]. 
Non-contact active systems collect data 
regarding object’s dimensions by generating 
an emission such as radiation, light or sound 
at the object and detecting the radiation that 
passed through the object, such as x-ray 
techniques or the reflection of the light or 
sound, such as camera or sonar systems. 
Time-of-flight, triangulation and phase 
measurement are examples of methods 
used to calculate distance or slope 
distribution of a surface with the detected 
information from the emissions sent towards 
the object [6]. The speed of these scanners 
will be considerably faster than contact 
scanners given the lack of need to physically 
interact with the object, but how much faster 
depends on the method, hardware and the 
type data collected for the reconstruction. 
Active scanners are varied in hardware and 
operating principles, from a simple set up 
consisting of a digital camera and an emitter 
acquiring images for reconstruction through 
triangulation, to more technically specific 
system such as 3D terrestrial laser scanners 
based on the various measuring principles 
mentions above. 

Non-contact passive systems collect 
data regarding object’s dimensions by 
detecting naturally available emissions, such 
as ambient radiation, reflected by the object. 
The most practical systems in this category 
involve image sensors, detecting the 
ambient radiations in the visible spectrum, 
through photogrammetric processes [7]. The 
most common type of passive scanner are 
basic cameras that acquire simple images of 
the object, with no use of projections or laser 
to enhance the data in the images. The 
reconstruction process is done through 
triangulation with the camera poses and the 



corresponding features between the 
respective acquired images, as shown in 
Figure 1. 

 
Figure 1: Triangulation through feature matching 

[8] 

Compare to contact and non-contact 
active scanners, non-contact passive 
scanner can present some advantages, 
such as speed, economic cost, operational 
difficulty, thoroughness and the lack of 
physical interaction with the object. This 
concludes that non-contact passive 
scanners are more suitable to our intended 
applications. 

Image sensors used in passive 
scanner require two different types of 
calibrations. An intrinsic calibration to 
determine the internal parameters of the 
image sensor and an extrinsic calibration to 
determine the pose of the image sensor, the 
internal parameters remain constant while 
the pose must be estimated for of each 
image acquisition.  

Calibrations are performed 
considering the pinhole camera model that 
relates the point’s three-dimensional 
coordinates to the image coordinates. For 
the pinhole model of optical imaging, the 
camera equation to obtain a three-
dimensional point in the image plane is: 
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Where λ is a nonzero scale factor; 
(𝑥, 𝑦) are the point’s coordinates in the 
image coordinate system; (𝑥 , 𝑦 , 𝑧 ) are the 
point’s coordinates in the world coordinate 
system; P is the camera matrix composed of 
𝐾[𝑅 𝑡]. 

K is an upper triangular matrix 
containing the intrinsic parameters, properly 
referred to as the matrix of the intrinsic 

camera parameters. The intrinsic 
parameters, 𝑓  and 𝑓  are the focal lengths in 
the x-axis and y-axis directions respectively; 
(𝑐 , 𝑐 ) is the principle point coordinates; and  
𝑠 is a skew parameter that corrects for tilted 
pixels, safely assumed to be zero for most 
cameras [7]. 

𝑅 is the 3x3 rotation matrix and 𝑡 is a 
3x1 translation matrix that encodes the 
orientation and positions of the camera, in 
the world coordinate system, these are the 
extrinsic parameters further explained later. 

Commonly used today, camera 
calibrations are based on a technique 
developed by Zhengyou Zhang. Zhang 
proposed a new flexible calibration method 
by using known constraints and 
assumptions [9][10].  

The extrinsic parameters are the 
external specifications of the image sensor 
at the time of the acquisitions. These 
parameters are the position and orientation 
of the camera’s reference frame relative to 
the world frame. The position is noted in the 
form of a three-by-one vector containing the 
cartesian coordinates of the frames origin in 
relation to the world frame, and the 
orientation is noted by a three-by-three 
matrix describing the rotation of the image 
sensor frame in relation to the world frame. 

Determining these extrinsic 
parameters is accomplished by solving the 
Perspective-n-Point problem, commonly 
referred to as PnP problem. Basically, this 
problem consists of using a set of known 3D 
points and their corresponding 2D points in 
the image to estimate the extrinsic 
parameters of an intrinsically calibrated 
camera. 

To keep within the scope of this 
thesis, we restricted our search to 
established and open sourced algorithms, 
instead of programming algorithms from 
root. The open source library OpenCV has 
available several algorithms to solve the PnP 
problem. The default method used by 
OpenCV is an iterative algorithm. This 
algorithm uses n≥4 points, performs an initial 
estimation for the pose, through a direct 
linear transform [7], and iterates this 
estimation using a Levenberg-Marquardt 
optimization to minimize the reprojection 
error. The other optional algorithms are 
based on the following papers for PnP 
solution: 



 P3P algorithm-Complete Solution 

Classification for the Perspective-

Three-Point Problem [11][12]. 

 AP3P algorithms-An Efficient 

Algebraic Solution to the 

Perspective-Three-Point Problem 

[13]. 

 EPnP algorithm-An Accurate O(n) 

Solution to the PnP Problem 

[11][14]. 

3 Proposed Solutions 

Currently the workers determine the 
location of the cuts simply by visually 
inspecting the blocks for flaws. A goal of the 
proposed system will be to optimize this part 
of the cutting process. Designing a system to 
scan and reconstruct a three-dimensional 
model of stone blocks grants us the ability to 
analyze the model using computer software. 
This would allow the quarry to optimize the 
amount of stone slabbed saved by 
calculating the positions of the cuts with a 
higher accuracy. Another objective will be to 
optimize the advertising quarry method by 
designing another system capable of 
scanning a processed block for the 
acquisition a 3D model for advertisement 
purposes, this allows quarries to show their 
customers the full volume and surface 
quality of their stone blocks if a more 
comprehensive medium. 

Scanner with Linear configuration 

This configuration is based on the 
idea to use the known motion of the 
Fravizel’s cutting machine. The cutting 
machine consists of a portico which supports 
the cutting instrument, this portico is installed 
on top of rails allowing it to move over the 
stone blocks. The portico rails are encoded 
and can be used to accurately perform 
acquisitions at defined intervals of distance. 
This way the full extrinsic parameters of 
each image can be easily determined with a 
single pose estimation, to determine all the 
extrinsic parameters of the initial acquisition, 
and the rails motion to easily apply the 
translation between acquisitions, to the 
subsequent poses. 

Scanner with circular configuration 

A 3D model of the finished limestone 
block would be possible to display on 
websites through a 3D displayer. This would 
allow possible buyers to rotate and zoom in 
and out of the block to obtain a more 
comprehensive appreciation of its 
dimensions and surface quality without 
having to sacrifice either. This configuration 
is based on this desire to obtain an accurate 
full gapless 360-degree view of the stone 
blocks that quarries intend to sell. The 
pictures are obtained with cameras 
positioned in a circle around the object, 
oriented towards the object, this ensures that 
all surfaces are captured and that there is 
significant overlap between consecutive 
cameras perspectives. 

To test initial designs and functions 
two Trust Exis webcams were used as 
image acquisition devices for small scaled 
simulations of configurations corresponding 
to desired applications. To simulate a small-
scale version of the first configuration (linear 
movement), the cameras were connected to 
one personal computer via USB ports and 
were accessed via MATLAB software 
installed with the MATLAB support package 
for USB webcams. A MATLAB script was 
created to control the triggering of the 
cameras. In this configuration, the 
acquisition of images needs to be 
synchronized between the cameras to 
ensure each pair of images corresponds to 
the same position in the portico’s rail, in the 
real scale application. The triggering method 
needs to be highly responsive to ensure the 
image pairs are captured at consistently 
regular specified intervals. To test the 
viability of this configuration the MATLAB 
scripts accomplished two functions 
triggering the cameras and timing the 
triggers. The results of this script allows to 
conclude that while MATLAB can be used to 
control and trigger multiple cameras, using 
one computer to send the triggering signal 
results in significant delays between the 
cameras, making it impossible to 
synchronize the acquisition of images 
between multiple cameras. Also, while the 
Trust Exis webcams, are a good option to 
test the viability and properties of image 
acquisition systems, they produce images 
with a very low resolution, resulting in a low-
quality three-dimensional model. Therefore, 
to improve the quality of the reconstructed 
model, images with higher resolutions are 
also required.  

The single-board computers 
developed by the Raspberry Pi foundation 



[15] have optional accessories and modules, 
such as an eight-megapixel camera module 
[16]. Since they are computers, however 
basic, these Raspberry Pis are a very 
flexible and easy to use tool. They can be 
used as camera controllers, signal 
generators and more, allowing a good 
degree of flexibility for the purpose of testing 
solutions to our designs. For our purposes, 
these computers need only enough 
processing power to manage and trigger one 
camera, therefore single-board computers 
are an appropriate cost-effective choice.  

Using a Raspberry Pi model 3 B+, as 
a controller for a V2 eight-megapixel camera 
module, establishes the optical sensor to be 
used in the following small-scale simulations 
of the scanner configuration designs. In 
these simulations, the scanned object is a 
common pavement limestone, as they are a 
good small-scale approximation of the 
quarry’s limestone block, given that they 
were a small piece of what was once before 
a large limestone block. A single camera set 
up is used to test the cameras optical 
viability and the Raspberry Pi capabilities. 

The Raspberry Pi was also used to 
test the multiple cameras synchronicity. Both 
cameras were set up to be triggered 
externally by the same signal generated by 
the Raspberry Pi. The generated signal was 
set to trigger acquisition every 1 second. 
Both cameras were aimed to a browser 
stopwatch to obtain a direct timestamp for 
the acquisitions. The results were organized 
in the following Table 1, allowing us to 
conclude that using an external signal to 
trigger the cameras results in a very 
satisfying synchronicity. 

Table 1: Camera trigger's timestamps 
Cam 1 

(sec) 
2.253 3.252 4.251 5.247 6.247 

Cam 2 

(sec) 
2.253 3.252 4.251 5.247 6.247 

Proposed 3D Scanners 

The proposed 3D scanner with linear 
configuration, consists of a pair of cameras 
attached to beams on the mobile portico 
structure and triggered by the same signal 
generated by its encoder, as the portico 
moves. The cameras are equipped with 1.1-
inch format 12-megapixel optical lenses with 
a broad field of view and a case to protect it 
from weather and harsh working conditions.  

The designed 3D scanner with 
circular configuration, is a small-scale 
version of the proposed scanner. This small-
scale scanner consists of a single camera 
supported by a kinematic chain and a 
servomotor, a common pavement limestone 
rock is used as a proxy to the quarry large 
limestone blocks. The camera used is a 8-
megapixels Pi Camera controlled by a 
Raspberry Pi. The kinematic chain is 
composed of three 3D printed joints, a 
prismatic joint allowing vertical translations, 
a rotational joint allowing rotation around a 
vertical axis, turning the camera left and right  
and another rotational axis allowing rotation 
around a horizontal axis, tilting the camera 
up and down. The servomotor is a 
continuous servo, capable of 360-degree 
rotations. This scanner maintains the 
camera, supported by the previously 
described structure, in a static position while 
using the raspberry pi to control the camera 
for image acquisition and the servo to rotate 
the object. The object’s rotation is 
accomplished by a defined amount of 
degrees between image acquisitions. To 
obtain a full reconstruction without gaps, the 
set of images used must view the object from 
enough directions as to eliminate blind spots 
and to ensure enough overlap for proper 
reconstruction. 

Intrinsic Calibrations 

For 3D reconstruction an optional 
input are the cameras intrinsic parameters, 
calculated through calibration. The cameras 
were calibrated using established tools or 
programmed functions. The MATLAB 
software comes installed with an app named 
Camera Calibrator for easy calibrations, 
later a python script using pre-built OpenCV 
functions was used to calibrate the cameras. 

MATLAB’s app, Camera Calibrator, 
receives two inputs: a set of images of a 
chessboard pattern, taken from the camera 
to be calibrated; and the size of the patterns 
squares in metric units. The chessboard 
pattern is supplied by the MATLAB 
documentation. The app performed all the 
calculations using the identifiable corners of 
the pattern and outputted the intrinsic 
parameters and mean absolute error.  

Using OpenCV functions through 
Python an intrinsic calibration is 
accomplished through the same inputs. The 
script is composed of three basic functions, 
one function uses the dimension of the 
chessboard pattern square to construct a 
matrix of three-dimensional coordinates of 



the identifiable points from the pattern, the 
second function analyses each image of the 
chessboard pattern and construct a matrix 
with the two-dimensional image coordinates 
of the corresponding points and the final 
function uses both these matrices to 
estimate the intrinsic parameters. The mean 
absolute reprojection error is also calculated 
using the estimated intrinsic parameters. 

Extrinsic Calibrations 

Estimating the poses of the cameras 
for each image acquisition can be 
accomplished by solving the Perspective-n-
Point problem. OpenCV function were used 
in a Python script to estimate the poses of 
the camera for the corresponding images. 
This calibration process needs as inputs, the 
intrinsic parameters, a single image and the 
three-dimensional coordinates of the 
identifiable points in the respective image. 
The notion being the correspondence 
between the three-dimensional coordinates 
and the two-dimensional image coordinates 
of a set of points from the image provided, 
would allow the estimation of the pose. The 
points were provided in one of two ways, 
either through the same chessboard pattern 
used in intrinsic calibration or using four 
Aruco markers, which are a set of different 
identifiable square patterns. The image of 
the pattern of choice was acquired and the 
chessboard or Aruco markers positions was 
manually measured and supplied to the 
script in the correct matrix form. The script 
outputted the estimated poses and the 
corresponding mean absolute error, the 
estimated poses were displayed through a 
3D plot for added verification and 
visualization. 

4 Results 

The proposed scanner with a linear 
configuration for the improvement of the 
stone cutting process, acquires a set of 
images with a resolution of (4112, 3008) 
pixels each. The set of images come with an 
interval of 15 centimeters, along the cutting 
machines rail, between acquisitions. 
Through Python using OpenCV functions, 
this system was intrinsically stereo 
calibrated using 100 images, containing the 
chessboard pattern, for each camera, the 
estimated calibration resulted in a mean 
absolute reprojection error of 33.99 pixels. 
The MATLAB stereo calibration app 
estimation resulted in a mean absolute 
reprojection error of 0.8888 pixels. It was 
theorized that the set of images used for 

calibration had the chessboard pattern cover 
a limited portion of the camera’s large field-
of-view resulting in poor calibrations.  

The extrinsic calibration was 
performed using the chessboard pattern with 
the four algorithms mentioned in section 2, 
with and without RANSAC. The resulting 
mean absolute reprojection errors are 
summarized in the following Figure 2. 

 

Figure 2: Linear Scanner Pose estimation 
Reprojection error 

Wrong Pose estimations highlighted in red 

From Figure 2 we can see that 
RANSAC has induced wrong estimation for 
the P3P and AP3P algorithms while using 
87% and 90% of points respectively. The 
iterative algorithms, both with and without 
RANSAC, obtained a proper estimation with 
significant lower error than the estimation 
performed by the P3P and AP3P algorithms 
without RANSAC. The Efficient-PnP 
algorithms performed poorly, resulting in 
wrong estimations with and without 
RANSAC. 

The proposed scanner with a circular 
configuration for the improvement of the 
advertising process, acquires a set of 
images with a resolution of (3280, 2464) 
pixels each. The set of images comes with 
an interval of 30 degrees, around the object, 
between acquisitions. Through Python using 
OpenCV functions, this system was 
intrinsically calibrated using 78 images, 
containing the chessboard pattern. The 
estimated calibration resulted in a mean 
absolute reprojection error of 0.1336 pixels. 
The MATLAB calibration app estimation 
resulted in a mean absolute reprojection 
error of 0.7676 pixels. 
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The extrinsic calibration was 
performed using the four algorithms 
mentioned in section 2, with and without 
RANSAC, on the four Aruco markers and the 
chessboard pattern. The resulting mean 
absolute reprojection errors are summarized 
in the following Figure 3. 

 

Figure 3: Circular Scanner pose estimations 
reprojection errors 

Wrong pose estimation highlighted in red 

Considering the calibrations 
performed without Ransac, while the points 
from the Aruco markers were non-coplanar 
and more varied coordinates-wise, the 
estimation resulted in higher mean absolute 
and root mean square reprojection errors 
compared to the correct calibrations using 
the chessboard pattern. Using Ransac 
resulted in entirely wrong poses across all 
algorithms applied on the chessboard 
pattern, using only 11% of points with 
Iterative or Efficient-PnP algorithms, and 
using 96% of points with P3P and AP3P. 
However, the Aruco markers seem to have 
fared better managing to estimate with a 
decent approximation while only using 42% 
of the points with Iterative or Efficient-PnP 
algorithms and 39% of the points with P3P 
and AP3P algorithms.  

Overall all algorithms with or without 
Ransac when applied on the Aruco markers, 
have resulted in the correct pose albeit with 
lower accuracy indicated by the reprojection 
errors, while the chessboard pattern has with 
some algorithms resulted in entirely wrong 
poses, showing however great accuracy 
when it does work properly. 

Given that a small number of poses 
and patterns were used to test the 

algorithms, these results might not reflect the 
cause of their limitations or general behavior. 

5 Conclusions 

The scanning system proposed to 
improve upon a quarry’s cutting process was 
design to be incorporated into the existing 
Fravizel’s cutting machine used by quarries. 
Succinctly, a non-contact passive scanner 
consists of a system of cameras aimed at the 
target object to acquired images of the object 
from different perspectives. For this system, 
a pair of stereo calibrated cameras was 
installed onto the cutting machine, using its 
infrastructure and mechanisms to support, 
move and trigger the cameras as 
synchronously as possible. The resulting 
images from a test scan were very clear and 
synchronized to the centisecond between 
the camera pair. 

This scanning system, consisted of 
two Dalsa’s Genie Nano C4020 cameras 
and accessories, such as protective 
housing, costing a total of 13 575,39€. This 
linear scanner produced scans of twelve-
megapixels synchronized images, and while 
the intrinsic calibration was sub-optimal the 
extrinsic calibration produced decent results 
with some algorithms, notably P3P 
algorithms. The intrinsic calibration took 
461,13 seconds to estimate the intrinsic 
values, resulting in high mean absolute 
reprojection errors, 38,55 and 29,43 pixels 
for camera 1 and 2 respectively, and badly 
estimated distortion coefficients can be seen 
by the undistorted images in Figure 78. This 
can be improved by using a set of images 
with the detectable chessboard pattern more 
evenly distributed around the field-of-view, 
especially the edges of the field-of-view for 
better distortion coefficients estimation. 

Considering the use of a sub-optimal 
intrinsic calibration, the iterative algorithms 
resulted in correct extrinsic calibrations, with 
and without RANSAC, showing low mean 
absolute reprojection errors of 0.27-0.29 and 
2.01-2.12 pixels for camera 1 and camera 2 
respectively, while P3P-based algorithms 
only estimated extrinsic parameters 
correctly without RANSAC, showing mean 
absolute reprojection errors of 0.43 and 3.17 
pixels for camera 1 and camera 2 
respectively. The incorrectly estimated 
extrinsic parameters, using P3P-based 
algorithms, show mean absolute 
reprojection errors of 0.89 and 6.50 pixels for 
camera 1 and camera 2 respectively. The 
efficient-PnP algorithms failed to properly 

0

10

20

30

40

50

Iterative EPnP P3P AP3P

Mean Absolute 
Reprojection Error

Aruco Aruco+Ransac

Chess Chess+Ransac



estimate extrinsic parameters with and 
without RANSAC, showing for camera 1 and 
camera 2, mean absolute reprojection errors 
of 1.07 and 7.9 pixels without RANSAC and 
1.36 and 9.97 pixels with RANSAC 
respectively. However, with proper intrinsic 
values they might function properly 
conveying reliably to the extrinsic calibration 
process across all algorithms and 
circumstances. Considering that intrinsic 
calibration is only required if the cameras 
internal properties are altered between 
scans and that extrinsic calibration are 
required for each scan, the time 
consumption of a scan boils down to the time 
it takes to intrinsically calibrate the cameras 
divided by the number of scans performed, 
plus the time to acquire the images and 
perform the extrinsic calibration for each 
scan. Considering that the intrinsic 
calibration took no longer than 8 minutes and 
the extrinsic calibration slightly less than 6 
seconds, the scanning process is 
accomplished nearly in the same time it 
takes to move the Fravizel’s cutting machine 
over the stone blocks. 

A scanning system with a circular 
movement was proposed to acquire a set of 
pictures from perspectives in a 360-degree 
motion around the object for a full high-
quality reconstruction to improve the 
quarries advertising process. A small-scale 
version of this system was constructed, 
where a single camera remains stationary 
while the object is rotated, through the use 
of a servo motor, at consistent intervals 
between image acquisitions, simulating the 
motion of the camera itself around the 
object. 

This scanner consisted of a 
Raspberry Pi 3B+, a Pi Camera v2, a 
continuous servo motor and a 3D printed 
kinematic chain, producing scans of eight-
megapixel images. The camera was 
properly intrinsically calibrated, in 124,03 
seconds, showing mean absolute 
reprojection error of 0,13 pixel. Several 
methods were used to achieve accurate 
extrinsic calibrations, the chessboard 
pattern or four Aruco markers were used to 
generate world to image coordinate 
correspondences while different algorithms 
were used for comparison. The Aruco 
markers resulted in proper extrinsic 
calibrations across all algorithms used with 
and without RANSAC, albeit with higher 
mean absolute reprojection errors, of 3.86 
and 4.02 pixels respectively, when 
compared to extrinsic calibrations 

accomplished without RANSAC using the 
chessboard pattern, which resulted in mean 
absolute reprojection errors within 0.14 to 
0.29 pixels, with the exception of the 
efficient-PnP algorithm which incorrectly 
estimated extrinsic parameter, showing a 
mean absolute reprojection error of 8.42 
pixels.. Using RANSAC on the chessboard 
pattern improperly estimated extrinsic 
parameters with all algorithms, resulting in 
mean absolute reprojection errors of 45.2, 
18.07 and 11.85 pixels for iterative, efficient-
PnP, and P3P-based algorithms 
respectively. 

While the proposed scanner’s data 
acquisition viability yielded positive results, it 
also showed room for improvement in the 
form of possible next steps and 
optimizations. Considering these scanners 
are a first step in a contribution to the quarry 
industry, some of the possible improvements 
are described subsequently. 

 Adding Second stereo camera pair 
for linear scanner - The proposed 
scanner’s physical configuration leaves 
a portion of the stone blocks 
unreconstructed, corresponding to blind 
spots in the camera’s fields-of-view. 
Adding another stereo pair of cameras 
would eliminate the blind spot. 

 Establish Real scale Circular 
Configuration - Given that the 
proposed small-scale circular scanner 
showed viability in obtaining the data for 
the reconstruction of good quality 3D 
models absent of blind spots, the next 
step would be to design a full-scale 
version of this scanner and implement it 
on the processed stone blocks. 

 Use Surface Enrichment - 3D 
reconstruction through images is based 
on detectable features on the surface of 
the object across the set of images, the 
ability to reconstruct and the quality of 
the model is related with the amount and 
quality of these features. Considering 
the uniformity of limestone blocks 
texture and color-wise, a projector could 
be used to project noise function-based 
patterns onto the stone blocks to enrich 
possibly featureless surfaces, as shown 
in [17]. 
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